# ELASTISCHE KUPPLUNGEN BAUREIHE BIPEX



| Allgemeines                 | 9/2 |
|-----------------------------|-----|
| Nutzen                      | 9/2 |
| Anwendungsbereich           | 9/2 |
| Aufbau und Ausführungen     | 9/3 |
| Technische Daten            | 9/4 |
| Bauart BWN                  | 9/5 |
| Bauart BWT                  | 9/6 |
| Bauart BNT                  | 9/8 |
| Ersatz- und Verschleißteile | 9/9 |





## **ALLGEMEINES**





BIPEX-Kupplungen kommen in vielen Bereichen des Maschinenbaus zum Einsatz.

Schwerpunkte sind gut ausgerichtete Elektromotorantriebe mit gleichförmiger Drehmomentbelastung, wie z.B. Applikationen der Hydraulik und Kombinationen mit Getriebemotoren. Eine häufige Verwendung findet die BIPEX Kupplung eingebaut in Motorlaternen.



Kupplungen geeignet für Verwendung in explosionsgefährdeten Bereichen. Konform mit der aktuellen ATEX Richtlinie für:



( € ⟨€x⟩ II 2G Ex h IIB T6 ... T4 Gb X



⟨€x⟩ II 2D Ex h IIIC T85 °C ... 120 °C Db X



⟨€x⟩ IM2 Ex h Mb X

#### Nutzen

BIPEX Kupplungen sind sowohl für horizontale, vertikale als auch frei wählbare Einbaulagen geeignet. Dabei können sie Axial-, Radial- und Winkelverlagerungen aufnehmen.

BIPEX Kupplungen bestehen aus zwei identischen Nabenteilen, die auf den zu verbindenden Wellenenden beliebig angeordnet werden können. BIPEX Kupplungen übertragen das Drehmoment formschlüssig und sind damit durchschlagsicher. Das spezifische Nockendesign führt zu einer optimalen Position des Elastomerringes und somit zu geringem Verschleiß.

Der Nockenring ist spielarm montiert und bewirkt eine progressive Drehfedersteifigkeit, d. h. die Drehfedersteifigkeit steigt mit zunehmender Auslastung. Durch das gute Dämpfungsvermögen und die Auswahl der geeigneten Steifigkeit besteht somit die Möglichkeit, Drehmomentstöße aufzunehmen und das Drehschwingungsverhalten des Antriebs positiv zu beeinflussen. Sowohl der Nockenring, als auch die einbaufertigen Nabenteile sind ab Lager verfügbar.

## Anwendungsbereich

Die BIPEX Kupplung ist im Katalogstandard in 13 Baugrößen mit Nenndrehmomenten von 21 Nm bis 5100 Nm verfügbar. Die Kuppplung ist für Umgebungstemperaturen von -50 °C bis +100 °C ohne Einschränkung des Nenndrehmomentes durch Temperaturfaktoren einsetzbar

## **ALLGEMEINES**

## Aufbau und Ausführungen



BIPEX Kupplungen in den Bauarten BWN, BWT und BNT bestehen jeweils aus zwei Naben in unterschiedlichen Ausführungen, die durch einen Nockenring aus Elastomerwerkstoff verbunden sind.

Die Verbindung der Naben mit den jeweiligen Wellen erfolgt über eine Passfederverbindung. Dabei besteht die Auswahl zwischen einer fertiggebohrten Nabe (BWN) und einer Nabe mit Taper-Spannbuchse (BWT).
BIPEX Kupplungen sind formschlüssig und durch den Nockenring aus thermoplastischem Polyurethan drehelastisch.

## Kupplungswerkstoffe

#### Naben:

• EN-GJL-250

#### Nockenring:

TPU 95 ShoreA

 -50 °C bis 100 °C
 ohne Einschränkungen

 über 100 °C bis 120 °C mit Einschränkungen

 (siehe Temperaturfaktor FT auf Seite E/21)



Bauart BWN



Bauart BNT



Bauart BWT

#### **Technische Daten**

| Leistungs | daten                 |                             |                        |                                       |                                        |                                     |                                                                                     |        |                                   |  |
|-----------|-----------------------|-----------------------------|------------------------|---------------------------------------|----------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------|--------|-----------------------------------|--|
| Baugröße  | Nenndrehmoment        | Dauerwechsel-<br>drehmoment | Maximal-<br>drehmoment | Maximal-<br>drehzahl                  | Drehfedersteife bei<br>50 % Auslastung | Verhält-<br>nismäßige<br>Dämpfung Ψ | Zulässige Wellenversatz bei<br>Drehzahl <sup>1)</sup><br>n = 1500 min <sup>-1</sup> |        |                                   |  |
|           | T <sub>KN</sub><br>Nm | T <sub>KW</sub><br>Nm       | $T_{Kmax}$             | n <sub>max</sub><br>min <sup>-1</sup> | C <sub>Tdyn 50 %</sub><br>kNm/rad      |                                     | Axial<br>ΔK <sub>a</sub><br>mm                                                      | Radial | Winkel<br>ΔK <sub>w</sub><br>grad |  |
| 43        | 21                    | 4,2                         | 63                     | 17000                                 | 2,86                                   | 1,4                                 | 0,25                                                                                | 0,1    | 0,3                               |  |
| 53        | 42                    | 8,4                         | 126                    | 14000                                 | 5,18                                   | 1,4                                 | 0,25                                                                                | 0,15   | 0,3                               |  |
| 62        | 60                    | 12                          | 180                    | 12000                                 | 8,6                                    | 1,4                                 | 0,3                                                                                 | 0,18   | 0,3                               |  |
| 72        | 112                   | 22,4                        | 336                    | 10000                                 | 15,1                                   | 1,4                                 | 0,3                                                                                 | 0,2    | 0,3                               |  |
| 84        | 208                   | 41,6                        | 624                    | 9000                                  | 23,7                                   | 1,4                                 | 0,4                                                                                 | 0,2    | 0,3                               |  |
| 97        | 305                   | 61                          | 915                    | 7800                                  | 39                                     | 1,4                                 | 0,5                                                                                 | 0,25   | 0,3                               |  |
| 112       | 520                   | 104                         | 1560                   | 6800                                  | 57                                     | 1,4                                 | 0,5                                                                                 | 0,25   | 0,3                               |  |
| 127       | 780                   | 156                         | 2340                   | 6000                                  | 91                                     | 1,4                                 | 0,6                                                                                 | 0,3    | 0,3                               |  |
| 142       | 1300                  | 260                         | 3900                   | 5300                                  | 141                                    | 1,4                                 | 0,6                                                                                 | 0,3    | 0,3                               |  |
| 162       | 1750                  | 350                         | 5250                   | 4700                                  | 210                                    | 1,4                                 | 0,6                                                                                 | 0,35   | 0,3                               |  |
| 182       | 3000                  | 600                         | 9000                   | 4100                                  | 313                                    | 1,4                                 | 0,7                                                                                 | 0,35   | 0,3                               |  |
| 202       | 3900                  | 780                         | 11700                  | 3700                                  | 422                                    | 1,4                                 | 0,8                                                                                 | 0,4    | 0,3                               |  |
| 227       | 5100                  | 1020                        | 15300                  | 3300                                  | 703                                    | 1,4                                 | 1,0                                                                                 | 0,45   | 0,3                               |  |

#### Drehfedersteifigkeit und Dämpfung

Die in der vorstehenden Tabelle angegebenen Werte gelten für eine Auslastung von 50 %, einer Anregungsamplitude von 10 %  $T_{\rm KN}$  mit der Frequenz 10 Hz und einer Umgebungstemperatur von 20 °C. Die dynamische Drehfedersteife ist belastungsabhängig und steigt mit zunehmender Auslastung. In der folgenden Tabelle sind die Korrekturfaktoren für unterschiedliche Nennbelastungen angegeben.

$$C_{\text{Tdyn}} = C_{\text{Tdyn } 50 \%} \cdot \text{FKC}$$

|                     | Auslastung $T_{\rm N}$ / $T_{\rm KN}$ |     |     |     |      |     |      |  |  |  |
|---------------------|---------------------------------------|-----|-----|-----|------|-----|------|--|--|--|
|                     | 20%                                   | 40% | 50% | 60% | 70%  | 80% | 100% |  |  |  |
| Korrekturfaktor FKC | 0,7                                   | 0,9 | 1,0 | 1,1 | 1,25 | 1,4 | 1,7  |  |  |  |

Die Drehfedersteifigkeit und Dämpfung ist weiterhin abhängig von der Umgebungstemperatur und der Frequenz und Amplitude der Drehschwingungsanregung. Genauere Drehfedersteifigkeits- und Dämpfungskennwerte auf Anfrage.

Bei elastischen Kupplungen beeinflussen vor allem der Herstellprozess der Gummielemente und deren Alterung den Steifigkeitswert  $C_{\mathsf{Tdyn}}$ . Dementsprechend muss mit einer Toleranz für die dynamische Steifigkeit von ± 20 % gerechnet werden. Die angegebene verhältnismäßige Dämpfung Ψ ist ein Mindestwert, so dass das Dämpfungsvermögen der Kupplung mindestens dem genannten Wert entspricht.

#### Zulässiger Wellenversatz

Der zulässige Wellenversatz ist abhängig von der Betriebsdrehzahl. Mit steigender Drehzahl sind geringere Wellenversatzwerte zulässig. In der folgenden Tabelle sind die Korrekturfaktoren für unterschiedliche Drehzahlen angegeben.

Es ist die Maximaldrehzahl der jeweiligen Kupplungsgröße zu beachten!

$$\Delta K_{zul} = \Delta K_{1500} \cdot FKV$$

|                     | Drehzahl in min <sup>-1</sup> |      |      |      |  |  |  |  |
|---------------------|-------------------------------|------|------|------|--|--|--|--|
|                     | 500                           | 1000 | 1500 | 3000 |  |  |  |  |
| Korrekturfaktor FKV | 1,2                           | 1,1  | 1,0  | 0,7  |  |  |  |  |

Die Wellenversätze  $\Delta$ Ka,  $\Delta$ Kr und  $\Delta$ Kw dürfen gleichzeitig auftreten.

<sup>1)</sup> Es ist die Maximaldrehzahl der jeweiligen Bauart zu beachten. Weitergehende Hinweise zum zulässigen Wellenversatz sind der Betriebsanleitung zu entnehmen

# **BAUART BWN**



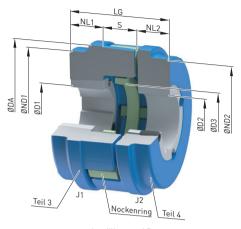
| Bau-<br>größe | Nenndreh-<br>moment | Dreh-<br>zahl    | Maße | in mm |     |             |             |    |      |     |     | Massenträg-<br>heitsmoment      | → Artikel-Nr. 1) | Gewicht |
|---------------|---------------------|------------------|------|-------|-----|-------------|-------------|----|------|-----|-----|---------------------------------|------------------|---------|
|               | T <sub>KN</sub>     | n <sub>max</sub> |      |       | DA  | ND1/<br>ND2 | NL1/<br>NL2 | S  | ΔS   | D3  | LG  | J <sub>1</sub> / J <sub>2</sub> |                  | m       |
|               | 95 ShoreA           |                  |      |       |     |             |             |    |      |     |     |                                 |                  |         |
|               | Nm                  | min-1            | min. | max.  |     |             |             |    |      |     |     | kgm <sup>2</sup>                |                  | kg      |
| 43            | 21                  | 17000            | _    | 25    | 43  | 43          | 22          | 12 | +0,5 | 21  | 56  | 0,000053                        | 2LC0120-0AA      | 0,34    |
| 53            | 42                  | 14000            | -    | 30    | 53  | 50          | 25          | 14 | +0,5 | 25  | 64  | 0,00012                         | 2LC0120-1AA      | 0,54    |
| 62            | 60                  | 12000            | _    | 35    | 62  | 58          | 30          | 16 | +0,5 | 29  | 76  | 0,00026                         | 2LC0120-2AA      | 0,87    |
| 72            | 112                 | 10000            | _    | 42    | 72  | 68          | 35          | 18 | +0,5 | 36  | 88  | 0,00056                         | 2LC0120-3AA      | 1,4     |
| 84            | 208                 | 9000             | _    | 48    | 84  | 76          | 40          | 21 | +0,5 | 40  | 101 | 0,0011                          | 2LC0120-4AA      | 2,0     |
| 97            | 305                 | 7800             | _    | 55    | 97  | 90          | 50          | 24 | +1,0 | 48  | 124 | 0,0025                          | 2LC0120-5AA      | 3,4     |
| 112           | 520                 | 6800             | -    | 65    | 112 | 100         | 60          | 27 | +1,0 | 54  | 147 | 0,0046                          | 2LC0120-6AA      | 4,9     |
| 127           | 780                 | 6000             | _    | 70    | 127 | 110         | 65          | 27 | +1,0 | 61  | 157 | 0,0078                          | 2LC0120-7AA      | 6,7     |
| 142           | 1300                | 5300             | _    | 80    | 142 | 126         | 75          | 31 | +1,0 | 70  | 181 | 0,015                           | 2LC0120-8AA      | 9,9     |
| 162           | 1750                | 4700             | _    | 90    | 162 | 134         | 80          | 36 | +1,0 | 81  | 196 | 0,023                           | 2LC0121-0AA      | 12      |
| 182           | 3000                | 4100             | _    | 100   | 182 | 152         | 90          | 42 | +1,0 | 91  | 222 | 0,043                           | 2LC0121-1AA      | 18      |
| 202           | 3900                | 3700             | -    | 120   | 202 | 168         | 100         | 48 | +1,0 | 102 | 248 | 0,068                           | 2LC0121-2AA      | 22      |
| 227           | 5100                | 3300             | _    | 130   | 227 | 180         | 110         | 54 | +2.0 | 115 | 274 | 0.11                            | 2LC0121-3AA      | 30      |

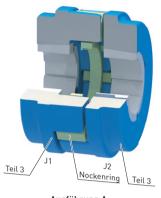
#### Konfigurierbare Varianten 1)

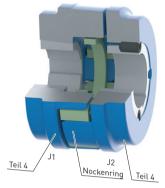
| • ØD1 | Ohne Fertigbohrung<br>Mit Fertigbohrung |
|-------|-----------------------------------------|
| • ØD2 | Ohne Fertigbohrung<br>Mit Fertigbohrung |

#### Hinweise

• Gewichte und Massenträgheitsmomente gelten für maximale Bohrungen.


#### Bestellbeispiel


- BIPEX Kupplung BWN, Baugröße 43
- Teil 1/2: Bohrung D1 20 H7 mm, mit Nut nach DIN 6885-1 und Stellschraube
- Teil 1/2: Bohrung D2 22 H7 mm, mit Nut nach DIN 6885-1 und Stellschraube


Artikel-Nr.: 2LC0120-0AA99-0AA0 L0M+M0N

Für das Ermitteln der kompletten Artikel-Nr. mit Angabe der Fertigbohrungsoptionen und – wenn erforderlich – weiteren Bestelloptionen nutzen Sie bitte unsere Konfiguratoren auf flender.com.

## **BAUART BWT**







Ausführung AB

Ausführung A

Ausführung B

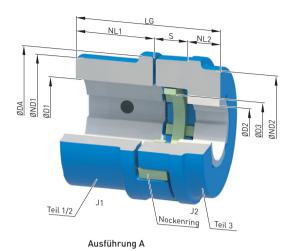
| Bau-<br>größe | Aus-<br>füh-<br>rung | Taper<br>Spani<br>buchs | n-   | Nenndreh-<br>moment | Dreh-<br>zahl     | Маве | Maße in mm     |    |      |     |             |     |     |      | Massen-<br>trägheits-<br>moment |     | Ge-<br>wicht |                                |                            |         |
|---------------|----------------------|-------------------------|------|---------------------|-------------------|------|----------------|----|------|-----|-------------|-----|-----|------|---------------------------------|-----|--------------|--------------------------------|----------------------------|---------|
|               |                      | Größe                   | •    | T <sub>KN</sub>     | n <sub>Kmax</sub> |      | ung m<br>DIN 6 |    |      | DA  | ND1/<br>ND2 | NL1 | NL2 | s    | ΔS                              | D3  | LG           | J <sub>1</sub> /J <sub>2</sub> |                            | m       |
|               |                      |                         |      | 95 ShoreA           |                   |      |                |    |      |     |             |     |     |      |                                 |     |              |                                |                            |         |
|               |                      |                         |      | Nm                  | min <sup>-1</sup> |      | max.           |    | max. |     |             |     |     |      |                                 |     |              | kgm²                           |                            | kg      |
|               | Α                    | 1008                    | 1008 |                     |                   | 10   | 222]           | 10 | 222] |     |             |     |     |      |                                 |     |              |                                | 2LC0120-2AB                | 0,90    |
| 62            | В                    | 1108                    | 1108 | 60                  | 12000             | 10   | 252]           | 10 | 252) | 62  | 58          | 23  | 23  | 16   | +0,5                            | 29  | 62           | 0,00023                        | 2LC0120-2AC                | 0,86    |
|               | AB                   | 1008                    | 1108 |                     |                   | 10   | 222]           | 10 | 252) |     |             |     |     |      |                                 |     |              |                                | 2LC0120-2AD                | 0,88    |
|               | A                    |                         |      |                     |                   |      | >              |    | >    |     |             |     |     |      |                                 |     |              |                                | 2LC0120-3AB                |         |
| 72            | В                    | 1108                    | 1108 | 112                 | 10000             | 10   | 252]           | 10 | 252] | 72  | 68          | 23  | 23  | 18   | +0,5                            | 36  | 64           | 0,00045                        | 2LC0120-3AC                | 1,3     |
|               | AB                   |                         |      |                     |                   |      |                |    |      |     |             |     |     |      |                                 |     |              | -                              | 2LC0120-3AD                |         |
|               | A                    |                         |      |                     |                   |      |                |    |      |     |             |     |     |      |                                 |     |              |                                | 2LC0120-4AB                |         |
| 84            | В                    | 1210                    | 1210 | 208                 | 9000              | 11   | 32             | 11 | 32   | 84  | 76          | 26  | 26  | 21   | +0,5                            | 40  | 73           | 0,00090                        | 2LC0120-4AC                | _ 1,9   |
|               | AB                   |                         |      |                     |                   |      |                |    |      |     |             |     |     |      |                                 |     |              |                                | 2LC0120-4AD                |         |
| 110           | A                    | 1/10                    | 1/10 | F00                 | /000              | 1./  | (02)           | 14 | 402] | 110 | 100         | 26  | 26  | 27   | 1.0                             | 54  | 79           | 0.0000                         | 2LC0120-6AB                | - 0.5   |
| 112           | В                    | 1610                    | 1610 | 520                 | 6800              | 14   | 402]           | 14 | 4027 | 112 | 100         | 20  | 20  | 21   | +1,0                            | 34  | 19           | 0,0030                         | 2LC0120-6AC                | 3,5     |
|               | AB<br>A              | 2012                    | 2012 |                     |                   | 14   | 50             | 14 | 50   |     |             | 33  | 33  |      |                                 |     | 97           | 0.0093                         | 2LC0120-6AD<br>2LC0120-8AB | 6.9     |
| 142           | В                    | 2517                    | 2517 | 1300                | 5300              | 16   | 60             | 16 | 60   | 142 | 126         | 45  | 45  | 31   | +1,0                            | 70  | 121          | 0,0073                         | 2LC0120-8AC                | 8,2     |
| 142           | AB                   | 2012                    | 2517 | 1300                | 3300              | 14   | 50             | 16 | 60   | 142 | 120         | 33  | 45  | . 31 | +1,0                            | 70  | 109          | 0,011                          | 2LC0120-8AD                | 7,6     |
|               | A                    | 2517                    | 2517 |                     |                   | 16   | 60             | 16 | 60   |     |             | 45  | 45  |      |                                 |     | 132          | 0.032                          | 2LC0120-0AB                | 7,0     |
| 182           | В                    | 3020                    | 3020 | 3000                | 4100              | 25   | 75             | 25 | 75   | 182 | 152         | 52  | 52  | 42   | +1,0                            | 91  | 146          | 0,032                          | 2LC0121-1AD                | -<br>15 |
| 102           | AB                   | 2517                    | 3020 | 3000                | 4100              | 16   | 60             | 25 | 75   | 102 | 132         | 45  | 52  | 42   | +1,0                            | 7 1 | 139          | 0,034                          | 2LC0121-1AC                | - 13    |
|               | A                    | 3020                    | 3020 |                     |                   | 25   | 75             | 25 | 75   |     |             | 52  | 52  |      |                                 |     | 152          | 0.054                          | 2LC0121-1AB                | 20      |
| 202           | В                    | 3535                    | 3535 | 3900                | 3700              | 35   | 90             | 35 | 90   | 202 | 168         | 90  | 90  | 48   | +1.0                            | 102 | 228          | 0.073                          | 2LC0121-2AC                | 27      |
|               | AB                   | 3020                    | 3035 |                     | 2.30              | 25   | 75             | 35 | 90   |     | . 50        | 52  | 90  |      | .,0                             |     | 190          | -1                             | 2LC0121-2AD                | 24      |
|               | A                    |                         |      |                     |                   |      |                |    |      |     |             |     |     |      |                                 |     |              |                                | 2LC0121-3AB                |         |
| 227           | В                    | 3535                    | 3535 | 5100                | 3300              | 35   | 90             | 35 | 90   | 227 | 180         | 90  | 90  | 54   | +2.0                            | 115 | 234          | 0,11                           | 2LC0121-3AC                | 36      |
|               | AB                   |                         |      |                     |                   |      |                |    |      |     |             |     | -   |      | ,-                              |     |              | •                              | 2LC0121-3AD                | - ''    |

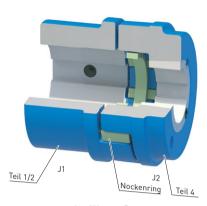
## Konfigurierbare Varianten 1)

| • ØD1 | Ohne Taper-Spannbuchse<br>Mit Taper-Spannbuchse |
|-------|-------------------------------------------------|
| • ØD2 | Ohne Taper-Spannbuchse<br>Mit Taper-Spannbuchse |

#### Hinweise

 Gewichte und Massenträgheitsmomente gelten für Kupplungen mit Taper-Spannbuchsen mit maximalen Bohrungsdurchmesser.


#### Bestellbeispiel


- BIPEX Kupplung BWT, Baugröße 72, Ausführung AB
- Teil 3: Mit Taper-Spannbuchse, Baugröße 1108, Bohrung D1 20 mm, mit Nut nach DIN 6885-1
- Teil 4: Mit Taper-Spannbuchse, Baugröße 1108, Bohrung D2 22 mm, mit Nut nach DIN 6885-1
- Nockenring mit Härte 92 ShoreA

Artikel-Nr.: 2LC0120-3AD99-0AA0L0M+M0N

- Für das Ermitteln der kompletten Artikel-Nr. mit Angabe der Fertigbohrungsoptionen und – wenn erforderlich – weiteren Bestelloptionen nutzen Sie bitte unsere Konfiguratoren auf flender.com.
- $^{\rm 2l}~$  Bei Verwendung von Taperbuchsen mit Flachnut sind größere Bohrungen möglich.
- ⊼ Klicken Sie auf die Artikel-Nr. zur Online-Konfiguration auf flender.com.

## **BAUART BNT**





Ausführung B

| Bau-<br>größe | Aus-<br>füh-<br>rung | Taper-<br>Spann-<br>buchse | Nenndreh-<br>moment | Dreh-<br>zahl     | Maße | laße in mm      |          |                                      |     |             |     |          |    |      |     | Massen-<br>trägheits-<br>moment | → Artikel-Nr. 1)   | Ge-<br>wicht               |              |
|---------------|----------------------|----------------------------|---------------------|-------------------|------|-----------------|----------|--------------------------------------|-----|-------------|-----|----------|----|------|-----|---------------------------------|--------------------|----------------------------|--------------|
|               |                      |                            |                     |                   | nach | ung mi<br>DIN 6 | 885-1    |                                      |     |             |     |          |    |      |     |                                 |                    |                            |              |
|               |                      | Größe                      | T <sub>KN</sub>     | n <sub>Kmax</sub> | D1   |                 | D2       |                                      | DA  | ND1/<br>ND2 | NL1 | NL2      | S  | ΔS   | D3  | LG                              | $J_1/J_2$          |                            | m            |
|               |                      |                            | 95 ShoreA<br>Nm     | min <sup>-1</sup> | min. | max.            | min.     | max.                                 |     |             |     |          |    |      |     |                                 | kgm²               |                            | kg           |
| 62            | A<br>B               | 1008<br>1108               | 60                  | 12000             | -    | 35              | 10<br>10 | 22 <sup>2)</sup><br>25 <sup>2)</sup> | 62  | 58          | 30  | 23       | 16 | +0,5 | 29  | 69                              | 0,00025<br>0,00024 | 2LC0120-2AE<br>2LC0120-2AF | 0,88<br>0,86 |
| 72            | A<br>B               | 1108                       | 112                 | 10000             | -    | 42              | 10       | 25 <sup>2)</sup>                     | 72  | 68          | 35  | 23       | 18 | +0,5 | 36  | 76                              | 0,00050            | 2LC0120-3AE<br>2LC0120-3AF | - 1,3        |
| 84            | A<br>B               | 1210                       | 208                 | 9000              | -    | 48              | 11       | 32                                   | 84  | 76          | 40  | 26       | 21 | +0,5 | 40  | 87                              | 0,00098            | 2LC0120-4AE<br>2LC0120-4AF | - 1,9        |
| 112           | A<br>B               | 1610                       | 520                 | 6800              | -    | 65              | 14       | 4023                                 | 112 | 100         | 60  | 26       | 27 | +1,0 | 54  | 113                             | 0,0038             | 2LC0120-6AE<br>2LC0120-6AF | 4,2          |
| 142           | A<br>B               | 2012<br>2517               | 1300                | 5300              | -    | 80              | 14<br>16 | 50<br>60                             | 142 | 126         | 75  | 33<br>45 | 31 | +1,0 | 70  | 139<br>151                      | 0,012<br>0,013     | 2LC0120-8AE<br>2LC0120-8AF | 8,4<br>9,1   |
| 182           | A<br>B               | 2517<br>3020               | 3000                | 4100              | -    | 100             | 16<br>25 | 60<br>75                             | 182 | 152         | 90  | 45<br>52 | 42 | +1,0 | 91  | 177<br>184                      | - 0,038            | 2LC0121-1AE<br>2LC0121-1AF | - 17         |
| 202           | A<br>B               | 3020<br>3535               | 3900                | 3700              | -    | 120             | 25<br>35 | 75<br>90                             | 202 | 168         | 100 | 52<br>90 | 48 | +1,0 | 102 | 200                             | 0,061              | 2LC0121-2AE<br>2LC0121-2AF | 21<br>25     |
| 227           | A<br>B               | 3535                       | 5100                | 3300              | -    | 130             | 35       | 90                                   | 227 | 180         | 110 | 90       | 54 | +2,0 | 115 | 254                             | 0,11               | 2LC0121-3AE<br>2LC0121-3AE | - 33         |

### Konfigurierbare Varianten 1)

| • ØD1 | Ohne Taper-Spannbuchse<br>Mit Taper-Spannbuchse |
|-------|-------------------------------------------------|
| • ØD2 | Ohne Taper-Spannbuchse<br>Mit Taper-Spannbuchse |

#### Hinweise

 Gewichte und Massenträgheitsmomente gelten für Kupplungen mit Taper-Spannbuchsen mit maximalen Bohrungsdurchmesser.

### Bestellbeispiel

- BIPEX Kupplung BNT, Baugröße 72, Ausführung A
- Teil 1/2: Bohrung D1 30H7 mm, mit Nut nach DIN 6885-1 und Stellschraube
- Teil 3: Mit Taper-Spannbuchse, Baugröße 1108, Bohrung D2 22 mm, mit Nut nach DIN 6885-1

Artikel-Nr.: 2LC0120-2AE99-0AA0 LOS+M0N

Für das Ermitteln der kompletten Artikel-Nr. mit Angabe der Fertigbohrungsoptionen und – wenn erforderlich – weiteren Bestelloptionen nutzen Sie bitte unsere Konfiguratoren auf flender.com.

 $<sup>^{\</sup>rm 2l}\,$  Bei Verwendung von Taperbuchsen mit Flachnut sind größere Bohrungen möglich.

 <sup>⊼</sup> Klicken Sie auf die Artikel-Nr. zur Online-Konfiguration auf flender.com.

# ERSATZ- UND VERSCHLEISSTEILE

## **BIPEX Nockenring**

| Baugröße | Artikelnummer      | Gewicht |
|----------|--------------------|---------|
|          |                    | kg      |
| 43       | 2LC0120-0WA00-0AA0 | 0,002   |
| 53       | 2LC0120-1WA00-0AA0 | 0,004   |
| 62       | 2LC0120-2WA00-0AA0 | 0,01    |
| 72       | 2LC0120-3WA00-0AA0 | 0,01    |
| 84       | 2LC0120-4WA00-0AA0 | 0,02    |
| 97       | 2LC0120-5WA00-0AA0 | 0,03    |
| 112      | 2LC0120-6WA00-0AA0 | 0,05    |
| 127      | 2LC0120-7WA00-0AA0 | 0,07    |
| 142      | 2LC0120-8WA00-0AA0 | 0,10    |
| 162      | 2LC0121-0WA00-0AA0 | 0,14    |
| 182      | 2LC0121-1WA00-0AA0 | 0,20    |
| 202      | 2LC0121-2WA00-0AA0 | 0,28    |
| 227      | 2LC0121-3WA00-0AA0 | 0,39    |

#### Hinweis

• Die Elastomernockenringe sind Verschleißteile. Die Lebensdauer ist abhängig von den Betriebsbedingungen.